Shale is a fine-grained, clastic sedimentary rock formed from mud that is a mix of flakes of Clay mineral (hydrous aluminium phyllosilicates, e.g., Kaolinite, aluminium2Silicon2Oxygen5(hydroxide)4) and tiny fragments (silt-sized particles) of other minerals, especially quartz and calcite.
The term shale is sometimes applied more broadly, as essentially a synonym for mudrock, rather than in the narrower sense of clay-rich fissile mudrock.
Clays are the major constituent of shales and other mudrocks. The clay minerals represented are largely kaolinite, montmorillonite and illite. Clay minerals of Late Tertiary mudstones are expandable Smectite, whereas in older rocks (especially in mid-to early Paleozoic shales) illites predominate. The transformation of smectite to illite produces silica, sodium, calcium, magnesium, iron and water. These released elements form authigenic quartz, chert, calcite, dolomite, ankerite, hematite and albite, all trace to minor (except quartz) minerals found in shales and other mudrocks. A typical shale is composed of about 58% clay minerals, 28% quartz, 6% feldspar, 5% carbonate minerals, and 2% Iron oxide. Most of the quartz is detrital (part of the original sediments that formed the shale) rather than authigenic (crystallized within the shale after deposition).
Shales and other mudrocks contain roughly 95 percent of the organic matter in all sedimentary rocks. However, this amounts to less than one percent by mass in an average shale. Black shales, which form in Anoxic waters conditions, contain reduced free carbon along with ferrous iron (Fe2+) and sulfur (S2−). Amorphous solid iron sulfide, along with carbon, produce the black coloration. Because amorphous iron sulfide gradually converts to pyrite, which is not an important pigment, young shales may be quite dark from their iron sulfide content, in spite of a modest carbon content (less than 1%), while a black color in an ancient shale indicates a high carbon content.
Most shales are marine in origin, and the groundwater in shale formations is often highly Saline water. There is evidence that shale acts as a semipermeable medium, allowing water to pass through while retaining dissolved salts.
Most clay must be deposited as aggregates and floccules, since the settling rate of individual clay particles is extremely slow. Flocculation is very rapid once the clay encounters highly saline sea water. Whereas individual clay particles are less than 4 microns in size, the clumps of clay particles produced by flocculation vary in size from a few tens of microns to over 700 microns in diameter. The floccules start out water-rich, but much of the water is expelled from the floccules as the clay minerals bind more tightly together over time (a process called syneresis). Clay pelletization by organisms that Filter feeder is important where flocculation is inhibited. Filter feeders produce an estimated 12 metric tons of clay pellets per square kilometer per year along the U.S. Gulf Coast.
As sediments continue to accumulate, the older, more deeply buried sediments begin to undergo diagenesis. This mostly consists of compaction and lithification of the clay and silt particles. Early stages of diagenesis, described as eogenesis, take place at shallow depths (a few tens of meters) and are characterized by bioturbation and mineralogical changes in the sediments, with only slight compaction. Pyrite may be formed in anoxic mud at this stage of diagenesis.
Deeper burial is accompanied by mesogenesis, during which most of the compaction and lithification takes place. As the sediments come under increasing pressure from overlying sediments, sediment grains move into more compact arrangements, ductile grains (such as clay mineral grains) are deformed, and pore space is reduced. In addition to this physical compaction, chemical compaction may take place via pressure solution. Points of contact between grains are under the greatest strain, and the strained mineral is more soluble than the rest of the grain. As a result, the contact points are dissolved away, allowing the grains to come into closer contact.
It is during compaction that shale develops its fissility, likely through mechanical compaction of the original open framework of clay particles. The particles become strongly oriented into parallel layers that give the shale its distinctive fabric. Fissility likely develops early in the compaction process, at relatively shallow depth, since fissility does not seem to vary with depth in thick formations. Kaolinite flakes have less tendency to align in parallel layers than other clays, so kaolinite-rich clay is more likely to form nonfissile mudstone than shale. On the other hand, black shales often have very pronounced fissility ( paper shales) due to binding of hydrocarbon molecules to the faces of the clay particles, which weakens the binding between particles.
Lithification follows closely on compaction, as increased temperatures at depth hasten deposition of cement that binds the grains together. Pressure solution contributes to cementing, as the mineral dissolved from strained contact points is redeposited in the unstrained pore spaces. The clay minerals may be altered as well. For example, smectite is altered to illite at temperatures of about , releasing water in the process. Other alteration reactions include the alteration of smectite to chlorite and of kaolinite to illite at temperatures between . Because of these reactions, illite composes 80% of Precambrian shales, versus about 25% of young shales.
Unroofing of buried shale is accompanied by telogenesis, the third and final stage of diagenesis. As erosion reduces the depth of burial, renewed exposure to meteoric water produces additional changes to the shale, such as dissolution of some of the cement to produce secondary porosity. Pyrite may be oxidized to produce gypsum.
Black shales are dark, as a result of being especially rich in oxidation carbon. Common in some Paleozoic and Mesozoic stratum, black shales were deposited in anoxic, reducing environments, such as in stagnant water columns. Some black shales contain abundant heavy metals such as molybdenum, uranium, vanadium, and zinc.R. Zangerl and E. S. Richardson (1963) The paleoecologic history of two Pennsylvanian shales, Fieldiana Memoirs v. 4, Field Museum of Natural History, Chicago The enriched values are of controversial origin, having been alternatively attributed to input from hydrothermal fluids during or after sedimentation or to slow accumulation from sea water over long periods of sedimentation.R.M. Coveney (2003) "Metalliferous Paleozoic black shales and associated strata" in D.R. Lenz (ed.) Geochemistry of Sediments and Sedimentary Rocks, Geotext 4, Geological Association of Canada pp. 135–144
Shales that are subject to heat and pressure of metamorphism alter into a hard, fissile, metamorphic rock known as slate. With continued increase in metamorphic grade the sequence is phyllite, then schist and finally gneiss.
The organic matter in shale is converted over time from the original proteins, Polysaccharide, Lipid, and other organic molecules to kerogen, which at the higher temperatures found at greater depths of burial is further converted to graphite and petroleum.
Formation
As hydrocarbon source rock
Historical mining terminology
See also
External links
|
|